The generator matrix

 1  0  1  1  1  1 X+6  1  1  1 2X  1  1  0  1  1  X  1  6 2X+6  1  1  1  1  1  1  1  1  1  1  1  1  1 2X+6  1  1  1  1  1  1 X+6  1  X  1  1  0  1  1  6  1 2X  1
 0  1  1  8 X+6 X+5  1 2X+7 2X 2X+8  1 X+1  0  1 2X 2X+1  1 X+8  1  1 X+7  1  5 X+6 X+8 2X+5  0 2X+7 X+6 X+2  6  5 X+5  1  7 2X+8 X+1 2X  6  3  1 X+8  1  X X+3  1  1 2X+7  X  X  1  0
 0  0 2X  0  6  6  6 2X+6  0  6  6 2X 2X+3 2X 2X+3  X X+6 X+6 X+6 X+3  X X+3 X+6 2X+6 X+3 X+6  3  6  3  3 2X X+3 2X+3  X 2X 2X+6 2X+6  X  X 2X+3  0  6 2X+3 2X 2X X+6  X 2X+6  X X+6 2X  0
 0  0  0  3  3  0  6  6  6  6  3  3  6  3  0  6  6  3  3  0  0  3  6  3  0  3  6  3  0  3  0  0  0  3  3  3  6  6  3  3  0  6  0  0  6  0  0  0  3  6  0  3

generates a code of length 52 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 96.

Homogenous weight enumerator: w(x)=1x^0+152x^96+228x^97+576x^98+1110x^99+996x^100+1758x^101+1818x^102+1338x^103+2964x^104+2300x^105+1620x^106+2100x^107+1376x^108+618x^109+348x^110+158x^111+30x^112+6x^113+68x^114+24x^115+24x^116+42x^117+6x^118+20x^120+2x^129

The gray image is a code over GF(3) with n=468, k=9 and d=288.
This code was found by Heurico 1.16 in 0.893 seconds.